
Express Yourself
by Chris McNeil

Remember in school when your
teachers explained how im-

portant math would be every day
of your life? There is no way
around it. From balancing your
checkbook to calculating gas mile-
age, mathematical calculations just
cannot be avoided. Computer
applications are no different. Since
we use computers to model
real-world situations, calculations
become a natural part of software
development.

I recently developed a small
application for a local office of an
international company that deals
in industrial equipment and mate-
rials. As distributors, they receive
purchase orders for specific mate-
rials and equipment. In turn, they
check with their suppliers for com-
patible parts at the lowest cost.
Finally, they calculate their selling
price using a set of formulae,
factoring in a desired profit margin.

In many cases, the supplier will
give a discounted purchase price.
Based on business volume, these
discounts will periodically fluctu-
ate (sometimes several times per
month).

Clearly, we have a situation
where calculations are being per-
formed on a dynamic set of formu-
lae. This is the difficult task of
application design. Should we
hard-code and achieve a quick fix,
or do we spend more time and
build in flexibility. Too often, pro-
grammers hard-code solutions
that will eventually require an
application to be recompiled. I
developed a more complete (read
flexible) solution.

TExpression Component
TExpression is a non-visual compo-
nent that provides a means of com-
puting the result of an arithmetic
expression, where the expression
is represented as a string constant.
Table 1 lists the operators and
function calls supported by the
expression parser. Notice that the
expression can contain function

calls. Each function accepts a
single Real parameter and returns
a Real result. User-defined func-
tions can be added to the parser, as
long as they conform to this
specification.

TExpression also provides a de-
sign time interface capable of
expression validation, operand
editing, standard and enhanced
result rounding, plus handling and
storage of named expressions.

Operators

Exponentiation ^, **

Multiplication *, MULT

Division /, DIV

Modulus %, MOD

Addition +

Subtraction -

Functions

ABS Absolute Value

ARCTAN ArcTangent

COS Cosine

EXP Exponential

FRAC Fractional

INT Integer

LN Natural Logarithm

SIN Sine

SQR Square (Power of 2)

SQRT Square Root

➤ Table 1: TExpression operators and functions

Expression The expression to be evaluated.

NamedExpressions Expression storage mechanism.

Precision Number of decimal places to generate in the Result. Valid
values are 0 and 2 through 8.

Result Result of the calculation. This is a read-only property.

RoundingState Standard and enhanced rounding capabilities:

rsStandardRounding Standard, built-in rounding that would
normally occur in Delphi calculations.

rsAlwaysRoundDown Directional rounding of the result
toward 0; value of RoundToNearest
used to determine how to round down.

rsAlwaysRoundUp Directional rounding of the result
toward infinity; RoundToNearest used
to determine how to round up.

RoundToNearest Used for directional rounding. Valid values are 0
(no significant decimal places) and .01 through .99.

SilentExceptions Determines if exceptions are raised or silenced. However, the
OnException event will always fire.

ValidExpression Determines when Expression is syntactically correct. This is a
read-only property.

➤ Table 2: TExpression properties

48 The Delphi Magazine Issue 23

Terminology
A sample expression might be:

(5 / 9) * (F - 32)

This is the Fahrenheit to Celsius
temperature conversion expres-
sion. It contains 4 operands: one is
a variable (F) and three are nu-
meric constants (5, 9 and 32). In
addition, there are three operators
(/, * and -).

Properties & Event Handlers
Table 2 lists the published proper-
ties of TExpression. In addition,
TExpression publishes two event
handlers: OnCalculated and OnEx-
ception. OnCalculated fires just
after a result has been calculated.

OnException fires when an inter-
nal exception occurs during TEx-
pression processing and can be
used to display an appropriate
message to the user, or log the
exception in an error log. The event
will fire for all exceptions, even
when SilentExceptions is False,
and is of type TExceptionEvent.

Design-Time Interface
Figure 1 shows the Object Inspec-
tor with a TExpression component
selected. Expression is a string
property that supports sub-prop-
erties. Normally, sub-properties
are supported by TClassProperty
and TSetProperty descendants.

However, by overriding the
TStringProperty class (Listing 1)
and including the [paSubProper-
ties] attribute, this capability is
possible. With this approach, the
property editor is asked to provide
its sub-properties for display in the
Object Inspector. Ray Lischner’s
book Secrets of Delphi 2 has a
chapter called Secrets of Property
Editors. It describes how to use sur-
rogate components to “simulate”
sub-properties. Ray’s example in-
volves splitting a TDateTime value
into its constituent parts (Month,
Day, Year, Hours, Minutes, Seconds
and Milliseconds) using a single
surrogate component. However,
since the Expression property of
TExpression can contain multiple,
variable operands, we need to pro-
vide a way to access the operands
with a slightly different approach.

The expression parser dissects
the expression and generates a
TStringList of TOperand compo-
nents. Listing 2 defines TOperand,
which holds the value of each vari-
able operand. It’s important to
note that TOperand descends from
TComponent. This is because the
Delphi IDE can create an appropri-
ate property editor for each pub-
lished property of a component
(check GetComponentProperties in
the Help for more information).

Notice that the TOperand class
has a single, published, property

called Value. When each of the
TOperand components (for a parsed
expression) is passed to GetCompo-
nentProperties, a TFloatProperty
editor is created.

The result is shown in Figure 2.
Notice that each sub-property is
listed in the Object Inspector with
the name Value. Fortunately, the
TPropertyEditor class, which is the
ancestor of all property editors,
provides the virtual GetName
method. When overridden, this
method is called by the Object
Inspector whenever the name of a
sub-property is required. The
corrected version, now handled as
a TOperandProperty (Listing 1), is
shown in Figure 3.

This takes care of the sub-prop-
erty list, but we still have a major
problem. Typically, parent proper-
ties of sub-properties are read-only
and simply display their class
name in the Object Inspector, eg
Font properties display as (TFont).
For TExpression, we need the
Expression property to be editable,
for obvious reasons. However, if
the sub-property list is in an ex-
panded state (-) when the Expres-
sion property is changed, the
Object Inspector is not notified of
the change. Consequently, the sub-
property list is not properly up-
dated. Figures 4 and 5 show this
problem in action. The solution is
to keep the Expression property

➤ Figure 1 ➤ Figure 2 ➤ Figure 3

July 1997 The Delphi Magazine 49

read-only when the sub-property
list is expanded but editable when
it’s collapsed.

Toggling Property Attributes
To reduce memory overhead in
design mode, Delphi instantiates
property editors only when they’re
needed. This means that just
before a sub-property list is
expanded, Delphi creates an

appropriate property editor for
each sub-property provided. It ac-
complishes this by calling the Get-
Properties method. To enforce the
read-only state while expanded,
a global Boolean variable (bSub-
PropListExpanded) was created and
initialized to False. After all sub-
property editors have been gener-
ated, bSubPropListExpanded is set to
True and the Modified method of
TExpressionProperty is called. This
action causes the GetAttributes

method to be called, which will
encounter the new state of
bSubPropListExpanded.

In doing so, the [paReadOnly]
attribute gets included and the
property becomes read-only.

When the sub-property list is col-
lapsed again, Delphi performs
memory cleanup by destroying all
non-essential property editors (for
non-displayed sub-properties).
Since we created our own TOper-
andProperty editor, we have access

unit ExpReg;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
 Graphics, Controls, DsgnIntf, TypInfo, Dialogs, Forms,
 ExpComp, ExpEditr;
type
 TOperandProperty = class(TFloatProperty)
 public
 destructor Destroy; override;
 function GetName: string; override;
 function GetValue: string; override;
 end;
 TExpressionProperty = class(TStringProperty)
 protected
 procedure ProcessOperand(Components: TStringList;
 Operand: TOperand);
 public
 function GetAttributes: TPropertyAttributes; override;
 procedure GetProperties(Proc: TGetPropEditProc);
 override;
 end;
 TResultProperty = class(TFloatProperty)
 public
 function GetAttributes: TPropertyAttributes; override;
 end;
 TROEnumProperty = class(TEnumProperty)
 public
 function GetAttributes: TPropertyAttributes; override;
 procedure SetValue(const Value: string); override;
 end;
procedure Register;
var bSubPropListExpanded: Boolean;
implementation
procedure Register;
begin
 RegisterComponents(’Samples’, [TExpression]);
 RegisterPropertyEditor(TypeInfo(Extended), TOperand,
 ’’, TOperandProperty);
 RegisterPropertyEditor(TypeInfo(string), TExpression,
 ’Expression’, TExpressionProperty);
 ExpEditr.Register; { NamedExpressions property editor }
 RegisterPropertyEditor(TypeInfo(Extended), TExpression,
 ’Result’, TResultProperty);
 RegisterPropertyEditor(TypeInfo(Boolean), TExpression,
 ’ValidExpression’, TROEnumProperty);
end;
destructor TOperandProperty.Destroy;
begin
 if (bSubPropListExpanded) then begin
 bSubPropListExpanded := False;
 Modified;
 end;
 inherited Destroy;
end;
function TOperandProperty.GetName: string;
begin
 Result := TOperand(GetComponent(0)).Name;
end;
function TOperandProperty.GetValue: string;
begin
 Result := inherited GetValue;
 if (Result = ’-999999999’) then
 Result := ’’;
end;
function TExpressionProperty.GetAttributes:
 TPropertyAttributes;
begin
 Result := inherited GetAttributes + [paSubProperties];
 if bSubPropListExpanded then
 Result := Result + [paReadOnly];
end;
procedure TExpressionProperty.ProcessOperand(
 Components: TStringList; Operand: TOperand);
var CompIdx: Integer;
begin

 { If Operand is not a System-Generated operand
 (Sys_Gen_Sym_), then generate an editor for its “Value”
 Property }
 if (Operand = nil) or (Pos(’SYS_GEN_SYM_’,
 UpperCase(Operand.Name)) <> 0) then exit;
 CompIdx := Components.IndexOf(UpperCase(Operand.Name));
 if (CompIdx = -1) then begin
 Components.AddObject(UpperCase(Operand.Name),
 TComponentList.Create);
 CompIdx := Components.Count - 1;
 end;
 TComponentList(Components.Objects[CompIdx]).Add(Operand);
end;
procedure TExpressionProperty.GetProperties(
 Proc: TGetPropEditProc);
var
 OpIdx: Word;
 SelectIdx: Word;
 CompIdx: Word;
 OpCount: Word;
 Operand: TOperand;
 Expression: TExpression;
 Components: TStringList;
begin
 Components := TStringList.Create;
 { For each selected Expression (TExpression), extract all
 Operands within Expression and generate an appropriate
 Property Editor }
 try
 for SelectIdx := 0 to PropCount - 1 do begin
 Expression := TExpression(GetComponent(SelectIdx));
 OpCount := Expression.OperandCount;
 if (OpCount = 0) then
 continue;
 for OpIdx := 0 to OpCount - 1 do
 ProcessOperand(Components,
 Expression.GetOperandAt(OpIdx));
 end;
 if (Components.Count = 0) then begin
 Components.Free;
 Components := nil;
 exit;
 end;
 Components.Sorted := True;
 for CompIdx := 0 to Components.Count - 1 do begin
 GetComponentProperties(TComponentList(
 Components.Objects[CompIdx]), [tkFloat],
 Designer, Proc);
 TComponentList(
 Components.Objects[CompIdx]).Free;
 end;
 bSubPropListExpanded := True;
 Modified;
 finally
 Components.Free;
 Components := nil;
 end;
end;
function TResultProperty.GetAttributes: TPropertyAttributes;
begin
 Result := (inherited GetAttributes - [paMultiSelect]) +
 [paReadOnly];
end;
function TROEnumProperty.GetAttributes: TPropertyAttributes;
begin
 Result := (inherited GetAttributes - [paValueList]) +
 [paReadOnly];
end;
procedure TROEnumProperty.SetValue(const Value: string);
begin
 { paReadOnly keeps data from being keyed. However, a
 double-click rotates through available values.
 Overriding this method ensures property IS NOT EDITABLE.}
end;
initialization
 bSubPropListExpanded := False;
end.

➤ Listing 1

50 The Delphi Magazine Issue 23

TOperand = class(TComponent)
 private
 FValue: Extended;
 FOnChange: TNotifyEvent;
 protected
 procedure SetValue(NewValue: Extended);
 procedure Changed; virtual;
 public
 destructor Destroy; override;
 property OnChange: TNotifyEvent
 read FOnChange write FOnChange;
 published
 property Value: Extended
 read FValue write SetValue;
end;

➤ Listing 2

➤ Figure 4 ➤ Figure 5

to the Destroy method of each sub-
property editor. It’s in this method
that we reset bSubPropListExpanded
back to False and notify the
TExpressionProperty (using the
Modified method). Again, this
forces a call to the GetAttributes
method. This time, however, the
[paReadOnly] attribute is not
included and the Expression
property is made editable again.

TOperand Value Changes
TOperand utilizes an OnChange event
handler to broadcast value
changes back to its owner TExpres-
sion. Upon TOperand instantiation,
the event handler is set to the
method TExpression.RegisterOper-
andChange using:

Operand.OnChange :=
 RegisterOperandChange;

RegisterOperandChange recalculates

the result, if possible. As operand
values are changed in the Object
Inspector, the OnChange event fires,
causing the expression result to be
recalculated.

Run-Time Interface
The run-time interface is simple.
First, establish the expression you
wish to evaluate. Set the Expression
property of TExpression to this
value. Check the ValidExpression
property to verify expression cor-
rectness. If True, the expression
was successfully parsed. When the
expression contains no variable
operands, the Result property will
be immediately calculated. How-
ever, if any variable operands are
included, repeated calls to the
SetOperandValueByName method
must be made to establish values
for these operands. For instance, if
the following statement were
executed:

Expression1.Expression :=
 ’(5 / 9) * (F - 32)’;

you would make a single call to
SetOperandValueByName as follows:

Expression1.SetOperandValueByName(

 ’f’, 65);

(note that it’s case-insensitive). As
soon as the operand value is set,
the Result property is available. In
this case, a result of 18.33 is
calculated.

Named Expressions
The NamedExpressions property is a
storage mechanism for often-used
expressions. Normally, you’d ex-
pect expressions to be stored
within database tables so that they
could be manipulated outside of
the application. This approach
would shelter the application from
simple changes to expression cal-
culations. However, non-database
applications require calculations
too. It seems a bit extreme to carry
several Mb of database support
files (the BDE) just to allow for
expression maintenance.

NamedExpressions is a TStrings
property with its own property edi-
tor dialog (Figure 6). Notice the
two-column string grid (Name and
Expression). After keying all the
necessary expression information,
clicking OK will store each expres-
sion within the NamedExpressions
property (and the application ex-
ecutable). By calling the public
GetNamedExpression method, expr-
essions can be retrieved for pars-
ing. For instance, if the expressions
from Figure 6 were stored, then the
Fahrenheit to Celsius conversion
expression would be accessed
with:

Expression1.Expression :=

 Expression1.GetNamedExpression(
 ’fahrtocel’);

As before, this statement simply
parses the expression. The result
cannot be calculated until a call is
made to SetOperandValueByName. If
the expression were a simple
calculation with no variable
operands, the result would be
calculated immediately.

July 1997 The Delphi Magazine 51

Obviously, expression storage is
of limited use if expressions cannot
be manipulated outside the Delphi
IDE or the application executable.
Therefore, the TNamedExpression-
sProperty dialog has two additional
buttons labelled Load and Save.

These provide access to expres-
sions stored in simple text files.
When the OK button is clicked with
a text file reference, as in Figure 6,
the filename is stored in the
NamedExpressions property rather
than the expressions themselves.
On TExpression instantiation, the
stored filename is passed to the

LoadFromFile method of the
TStrings class. This loads the ex-
pressions into NamedExpressions. In
this fashion, expressions can be
maintained outside the application
with no need for re-compilation.

Conclusion
The ability to manipulate arithme-
tic expressions outside of an appli-
cation provides a very flexible
technique for sheltering applica-
tions from constant programmer
intervention. Using TExpression,
subtle changes to calculations can
be made easily with no need to
recompile your applications. In ad-
dition, application users gain more
control over the application and
the information that it generates.

Chris McNeil is an independent
developer specializing in Delphi
component creation. He has been
developing with Delphi since its
inception. Prior to that, he wrote
applications with Paradox for
Windows and C++. He can be
reached by email on Compuserve
at 72734,2270

➤ Figure 6

52 The Delphi Magazine Issue 23

	TExpression Component
	Terminology
	Properties & Event Handlers
	Design-Time Interface
	Toggling Property Attributes
	TOperand Value Changes
	Run-Time Interface
	Named Expressions
	Conclusion

